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ABSTRACT

The concept of equivalent annual annuity (EAA) has long been used as a method of costing
recovery of invested capital and the required return on invested capital over the productive
life of a capital project. Academic texts almost universally use EAA methodology with level
payment streams (annuities) to allocate capital costs. We develop a methadology for
allocating capital costs evenly over each unit of production for projects with anticipated non-
level production. This methodology uses a modified EAA approach that allows non-level
annuity payment streams. Capital cost allocation is an important component in computing
the value of extracted minerals for severance tax purposes; however, many firms and state
and federal agencies use ad hoc depreciation schedules to allocate these costs. Ad fioc
depreciation methods such as modified accelerated cost recovery system (MACRS) may be
appropriate for income tax purposes but are inconsistent with commonly found requirements
that severance taxes “‘shall be assessed on the wellhead or mine mouth fair market value.”
The modified EAA approach provides a straightforward alternative that is based on sound
financial methodology.
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INTRODUCTION

The concept of equivalent annual annuity (EAA) has long been used in
engineering, finance and accounting texts as a method of costing required return
on invested capital and the return of invested capital over the productive life of a
capital project (e.g., see [3, 4, 6, 8]). The EAA approach uses level production and
level payment streams (annuities) in deriving capital recovery factors (CRF). The
authors are unaware of any popular text in any of these fields that covers capital
cost allocation for projects with anticipated non-level production. A representative
industry for this type of problem is the natural gas industry, in which declining
production curves are generally observed.

The EAA approach often leads to CRF that misrepresent the allocation of
capital recovery and return on invested capital for projects with non-level
production. This was evident from the author’s recent consulting experience in
which one of the nation’s largest oil and gas firms was required to determine the
value of natural gas at thc wellhead for State of Wyoming severance tax
calculations. Wyoming’s statute requires that severance taxes be assessed on the
fair market value of gas at the wellhead, and any valuc added subsequent to the
wellhead is not taxed. Thus, any operating costs incurred and all capital costs (e.g..
capital investment in a gas processing plant) may be deducted fromtotal sales price
to determine the wellhead taxable value.

Capital costs related to investment in a gas processing plant are the major costs
to be deducted from total sales revenue in determining the taxable value of gas for
severance tax purposes. Interestingly, both the State of Wyoming Department of
Revenue and the major oil and gas firm use ad hoc depreciation schedules to
allocate these costs. However, ad hoc depreciation methods such as modified
accelerated costrecovery system (MACRS) were never meant for allocating capital
costs and are inconsistent with the statutory requirement that severance taxes “shall
be assessed on fair market value.” These ad hoc depreciation methods may be
appropriate for income tax calculations, but they are not consistent with standard
financial theory that should be applied to severance tax calculations.

To determine CRFs in accordance with Wyoming statute, non-level (or, for
natural gas fields, declining) production curves must be considered to allocate
capital costs evenly over each unit of production over the field’s expected
productive life. We develop a methodology for allocating capital costs using a
modified EAA approach that accommodates more-general types of annuities thal
have non-level payment streams. We derive a CRF that correctly allocates capital
costs for projects with non-level production. We then apply this methodology to
data taken from a currently operating gas field in Wyoming.
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Both the State of Wyoming and firms paying severance taxes in Wyoming
should require that financially acceptable methodology be used to determine
severance taxes. Any perceived lack of tairness in determining severance taxes
might hinder the competitiveness of Wyoming’s oil, gas, coal and other extractive
industries.

MoODIFIED EAA METHODOLOGY

We first consider a simple example of a gas licld with a S-year expected life that
requires an initial capital investment of $5,000,000, with no additional investineni
required in subsequent years. The cost ol capital is [0% (compounded annually)
and the firm pays no taxes. We derive CRFs for both discrete-time and continuous-
time frameworks.

DISCRETE-TIME EXAMPLE

To serve as a comparison with the non-level production case, we lirst consider
level production. Then, we generalize the analysis by assuming a declining
production function with simple linear decline.

Case 1: Level Production

We initially assume that a gas field is expected to have level production ot
1,000,000 thousand cubic teet (MCF) per year. In this case, the conventional EAA
methodology correctly allocates capital costs evenly over each unit of production

over the project’s life. Let A represent the EAA. A is computed as
A= $5,000,000

- (h

(PVAF 4 5)

where PVAF
rate r.

is the present value annuity factor for an n-year level annuity at

r.n

| — (l + r)—”

r

PVAF

rae T

EQUATION (1) yields a solution of A = $1,318,987, with PVAF |, = 3.7908. The
annual allocation A includes both capital recovery and return on invested capital.
An amortization schedule showing the breakdown of A between these two
components for each ycar of production is shown in TABLE 1. Note that capital
recovered increases each year but averages $1,000,000.
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TABLE 1. Amortization Schedule for Level Production Case.”

Total Cost  Return on Capital EOY Cap
Recovered” Invested Cap‘ Recovered® Employed*

-~

21

0 $5.000,000
1 1.0 $1,318,987 $500,000 $818,987 4,181,013
2 1.0 1,318,987 418,101 900,886 3,280,126
3 1.0 1,318,987 328,013 990,975 2,289,152
4 1.0 1318987 228915 1,090,072 1,199,079
5 1.0 1,318,987 119,908 1,199,079 0

Tot: 5.0 $6,594,937 $1,594,937  $5,000,000

Ave: 1.0 $2,198,312 $531,646  $1,666,667

t denotes years; y, denotes production level (in mm MCF); this table assumes
A=3%$1,318987 and r=0.10

» (Total Cost Recovered), = A

¢ (Return on Invested Capital), = (r) x (EOY Capital Employed), _,

(Capital Recovered), = (Total Cost Recovered), - (Return on Invested
Capital),

¢ (EQY Capital Employed), = (EQOY Capital Employed), , (Capital
Recovered),

Let ¢ denote combined capital cost of the project per unit of production. For
the level production case, we have

C=($5mm)-(CRF)= $1,318,987 —$132/MCF G

(lmm MCF)  (Imm MCF)

where CRF is equal to the reciprocal of the present value annuity factor:

CRF =1/(PVAF,q5)=0.2638. (4)

Case 2: Declining Production

We now assume that all parameters are the same as above except that production
is expected to decline linearly from 1,200,000 MCF in the first year to 800,000
MCEF in the fifth year. Let y, denote expected production in year ¢ (in MCF), and
let p, denote an index of relative expected production in year ¢, computed as

P =Y/ (5)

where the index base is p, = 1. Values of y, and p, for this project appear in the
amortization schedule in TABLE 2. Note that average annual production in this case
is 1,000,000 MCF, the same as in the previous case.
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TABLE 2. Amortization Schedule for Declining Production Case.*

; v p Total Cost Return on Capital EOY Cap
. ! Recovered” Invested Cap® Recovered’ Employed*
0 $5,000,000
1 1.2 1.0000 $1,553,292 $500,000 $1,053,292 3,946,708
2 1.1 09167 1,423,851 394,671 1,029,180 2,917,528
3 1.0 0.8333 1,294,410 291,753 1,002,657 1,914,871
4 09 07500 1,164,969 191,487 073,482 941,389
b) 0.8  0.6667 1,035,528 94,139 941,389 0
Tot: 5.0 $6,472,050 $1,472,050 $5.000,000
Ave: 1.0 $2,157,350 $490,683 $1.666.,667

* rdenotes years; y, denotes production level (in mm MCF); r, denotes relative production index:
this table assumes A = $1.553,277 and r = 0.10

(Total Cost Recovered), =A x r,

© (Return on Invested Capital), = (r) x (EQY Capital Employed), |

¢ (Capital Recovered), = (Total Cost Recovered), - (Return on Invested Capital),

¢ (EOY Capital Employed), = (EQY Capital Employed), | - (Capital Recovered),

b

As before, the objective is to determine a cost recovery factor that will allocate
capital costs evenly over each unit of production for the life of the ficld, and to
derive an amortization schedule that shows the breakdown of capital costs for cach
year of the project’s life.

We define a modified present value annuity factor, denoted MPVAF, that
allows non-level cash tlows:

h
MPVAE, = Y —2 (6]

r.n Y
" (T+7r)

This factor computes the present value of a cash flow siream whose proportional
payment pattern matches that of the designated production curve. Note that the
level production case is simply a special case of EQUATION (6) with p, = 1.
Although this annuity factor does not, in general, collapse to a simple formula such
as EQUATION (2), it does simplify in certain special cases such as exponential
decline, as will be demonstrated later in the paper.
We now generalize the level production case as follows:
1

T buasic ) {7

(MPVAF, )
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'
(5]
~1

where [ is initial capital used, n is the expected project lile in years, and where A
is analogous to the equivalent annuity from the level production case. The CRF for
the non-level production case is equal to the reciprocal of the modified annuity
factor:

CRF =1/(MPVAF, ). (8)

More intuitively, EQUATION (7) may be written as

Pl P Py
[=A + et , )]
O+ (+r) 1+ )"

which shows that the annuity factor in brackets both computes present value and

scales each payment relative to year 1. The cost allocation for year ris equalto A -p,.
For the present example, we have

§5.000,000 = A 1.000()+0.9l67 +0.8333+0.750()+0.6667 , (10)

(o) (uioy (uro)t (o)t (Lo

which yields A = $1,553,277. The modified annuity factor in brackets equals
3.2190, which results in a CRF of 0.3107. This implies a per unit capital cost of
(I"CRE) A $1553277

¥ v (12mm MCF)

compared to $1.32/MCF for the level production case. An amortization schedule

for the declining production case is shown in TABLE 2.

Note that the divisor of EQUATION (11) is initial-year production, not average
annual production as in EQUATION (3) from the previous casc. This is because the
modified annuity factor allocates capital costs according to the relative production
index, which has as its base year the initial year, whereas the conventional annuity
factor allocates capital costs evenly over each year of production. Correspondingly,
in EQUATION (11) the quantity A represents initial year capital cost allocation, not
average annual cost allocation as in EQUATION (3). Additional insight is obtained
by writing EQUATION (9) as

n n
! =A2p,(l+r)—’ =(cyl)2p,(l+r)_'. (12
r=| =]

The level production case is a special case of EQUATION (12) with p, = [ and
yi =y,= y (constant).
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Comparing this case to the previous one, we observe that the per unit capital
cost is smaller in the declining production case. This is because declining
production results in more capital being recovered in early years, which lowers the
firm’s overall cost burden of obtaining funds. Specifically, it lowers the total dollar
amount of return on invested capital charged on the amortization schedule, as can
be seen in TABLES 1 and 2. When a project’s capital is recovered more quickly, the
firm can “pay off™ its investors sooner. (Return to investors may be in the form of
dividend or interest payments, or retention of earnings by the firm.) When costing
capital expenditures, failure to account for the actual timing pattern of cash flows
violates basic time value principles, whether the cost accounting is done for
severance tax purposes or for financial decision making purposes.

Some taxing authorities have severance tax codes that are vague with respect
to how capital costs should be allocated when computing the taxable value of
extracted minerals. This may be purposeful, as it would allow the taxing authority
to have greater latitude in interpreting what is acceptable methodology, depending
on its revenue needs. For cxample, when commodity prices are low, the taxing
authority may compensate for the resulting decrease in tax revenues by explicitly
or implicitly enforcing a methodology that specifies less accelerated costing.
However, this may seriously distort capital cost allocations and shift price risk to
the producer.

CONTINUQUS-TIME EXAMPLE

The non-level production case is easily generalized to a continuous-time frame-
work. Let g, denote the instantaneous rate of production at time ¢ (in mm MCF),
and let Q, denote cumulative production at time # (in mm MCF). Continuing with
the previous example, the continuous-time analogue of the discrete linear decline
function is

g, =125 -01r. (13)

As in the discrete case, total production over the project’s litc is 5.0 mm MCF and
the annual rate of production declines by 0.1 mm MCF per year. Total production
is computed by
5
0s =Jq,df=5-0, (a4
0

and the annual rate of production decline is indicated by the negative coefficient
of ¢ in the linear production function EQUATION (13).
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In the continuous case, p, represents instantaneous relative expected
production at time ¢ and is defined as

P =4,/40 (15)

with an index base of g, = 1. For the present example, with g, as given in EQUATION
(13) and with g, = 1.25, we have

o, =1-08t. (10)
The continuous-time modified annuity factor is

T
MPVAF, =Ip,e‘”dz (17
0

where i = In(1+r). The continuous-time analogue of EQUATION (9) is
T
I=4 J'p,e_"dt (18)
0

where the instantaneous cost allocation at time ¢ is equal to A -p,.
For the present case, we have

5
$5,000,000 = A j(l —.oxr)ﬂ“mm : (19)
0

which yields A = $1,540,930. The moditied annuity factor in brackets equals
3.2448, which results in a CRF of 0.3082. This implies a per unit capital cost of

s A=A o 200 _§123/MCF (20)

compared to $1.29/MCF for the discrete declining production case. The continuous
case results in a lower per-unit capital cost than the discrete case because capital
recovery is more accelerated. EQUATION (18) can also be written as

T
e (cqo)Jp,e“‘dr. @)
0

An amortization schedule is not shown for the continuous case. In practice.
amortization schedules for continuous production curves may be constructed by
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discretizing the continuous production curve, as will be demonstrated in the next
section. A summary of the modified EAA methodology for each of the three cases
considered above appears in TABLE 3.

HYPERBOLIC PRODUCTION CURVES

Natural gas fields generally cxhibit continuously declining production from the
moment production begins. In particular, most wells exhibit hyperbolic decline.
which is characterized by the following production function, as formulated by Arps
[1,2]:

g, = g9l +'1D0’)-1/ns 1€(0,T) (22

where O<ns< 1, and where ¢, is the initial instantaneous rate of production and D,
is the initial instantaneous rate of decline in production. This rate-time relationship
is derived from the ditlerential equation

(I'V

D:K~(1":_dr. (23)
q

subject to the initial condition

where D denotes the decline rate as a fraction of the production rate. Cumulative
production is given by

qll
0, = zl—_—f—ﬁ)‘;(q&'” -q ) (25)

When 0 < n < 1, the hyperbolic decline curve is characterized by a
continuously decreasing decline rate D, that is proportional to a fractional power
(n) of the production rate. Hyperbolic decline includes the special cases of
exponential decline (n = (), for which the decline rate is a constant percentage ot
the production rate, and harmonic decline (n = 1), for which the decline rate is
directly proportional to the production rate.

Towler {9; ch.l4] and references therein discuss methods ol empirically
estimating the parameters of EQUATION (22). In practice. the assumption ol
exponential decline is widely used due to its analytic tractability and its
conservative results. Exponential decline has been empirically shown to reasonably
approximate the more general hyperbolic form (e.g., [5, 7]).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



THE ENGINEERING ECONOMIST ¢ 1999 « VOLUME 44 « NUMBER 4 341

TABLE 3. Summary of Modified EAA Methodology.

Capital
Recovery Factor
and Annuity Factor

Combined Capital Cost
Per Unit of Production

| -
Level CRF = v (,:i:(l'(’RF)
Production PVAF v v
Discrete C - — ' ’
merefe Lase PVAF = (l * r) ¥ = ave. annual production

| .
Non-level CRF=—7—— ¢ zi: ({ CRF)
Production MPVAF ¥ ¥

Discrete Case  ppyAF = Z P (1+r)7" y| =year | production

Non-level CRE = MPVAF (-=_A_:(1.CRF)
lém(:}lction c T i 90 q9
ontinuous Case  MPVAF = 0 pedi gq = initial production rate
i=1nll+7r)

* r,= Index of Relative Expected Production
" J= Initial Dollar Investment in Capital Project

MOoDIFIED EAA APPROACH WITH HYPERBOLIC DECLINE

For the general hyperbolic decline curve, the modified present value annuity factor
is
T T ‘
MPVAF, ; = Jp,e_”dt = J(l +11D0t)_1/”€ﬁ”dr , (26)
0 0

which does not have a tractable closed form solution. In practice, one could solve
EQUATION (26) numerically, or alternatively one could discretize the production
function by specifying year ¢ production as

v =0 -0 (1=12,...7) 27)

and then proceeding as in the discrete case. After estimating the parameters g, D,
and n, this could be easily implemented on a computer spreadsheet using
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q0 I-n -
vy =0 =0 ——n—“(%—l -4, ") (28)

where g, is computed from EQUATION (22). For convenience, we specify the time
period as years although in general At may represent any desired time interval.

EXPONENTIAL DECLINE
In the special case of exponential decline (n = 0), the production function becomes:
. —i/n _
, = lim [qo(l +nDOt) / ]:qoe D“', (29)
n--30

and cumulative production at time f reduces to

i
Q{ — ‘(!AE_D“’\-dS = -(—q%)- - %ﬂo-(] —- (/#D“I ) (3

The index of relative production in this case is

—Dgyt
e Yo
Eo_z (’_D“', (31)

P =
q0

and the continuous-time modified annuity factor is
T

MPVAE = Je'D“'e"”dt =-(—b—l:5(1-e‘(”"+i)7]. (32)
0 0

This factor may be used to compute CRFs (by taking the reciprocal of the factor).
and to compute per-unit capital costs using EQUATION (20).
To discretize the exponential decline function, we define year ¢ production as

(Q -0, l) q, lD q; _ 610(1 _De*Du)eD”[‘ (33)
0 0

which results in the following discrete-time relative production index:
p, = e Pl (34

Hence, the discrete-time moditied annuity factor is
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! ,T{D0+)

=
MPVAF,, = Jp,e_” =D Ze—D«" = e

—_— 35
0o+) |

r=} t=l|

where the CRF is the reciprocal of this factor, and the per-unit capital cost may be
computed using EQUATION (11).

NUMERIC EXAMPLE

We demonstrate the case of exponential decline using an actual decline curve that
was estimated using production data taken from a gas field in Wyoming. The ficld
represents a 20-year project requiring an initial capital investment of $350 million
and assuming no subsequent investment. The parameters g, and D, have been
estimated at 50 mm MCF and 0.0805, respectively. The firm is assumed to have a
weighted average cost of capital (WACC) of 15%, which implies that r=0.15 and
i=1n(1.15)=0.13976. (Note that EQUATIONS (38) and (44) show i rounded to five
significant digits; however, in actual computations, { is unrounded to obtain more-
accurate annuity factors.)

Using this information, the expected production curve for this gas field is

q, =50 08051 (361
and expected total production is

50
T 00805

Or [1 -f‘”*“”““’]:496‘964215 mm MCF. (37)

In continuous time, the modified annuity tactor is

| _e—(‘()805+,13976)(20)

MPVAF = =4 4846005, (38,
11976.20 (0805+13976)

and A is equal to
$350,000,000
44846005

=$78,044,85595. (39)

This implies a CRF of 0.222985 and a per-unit capital cost of

L=i=w=$]560897/MCF (40)

g0 (50 mm MCF)
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Alternatively, using the discrete-time framework, the formula for year 1
production is

50((}.()8()5 _ l)

[ w—" UL UL YT T P @
0.0805
which implies an initial-ycar production amount of
y, =48,040,433 MCF (42)

and which results in the following discrete-time relative production index:

p, = o —0805G—1) 43)
The discrete-time modified annuity factor is
| _8—20(‘0805+.I397())
MPVAF, ; =8 =4.3448784, (44
- e(.(lB()5+.1397()) 0
and A is equal to
§isjum(ﬂ=$8()‘554,6|2.45. (45

43448784

This implies a CRF of 0.230156 and a per-unit capital cost of

c= Ao 8035481245 ¢y oq6809/MCF. 46)

yi (48040433 mm MCF)

An amortization schedule for the discrete case is in TABLE 4. This table
represents the correct approach for allocating capital costs for a firm that has non-
level production, and especially for governmental bodies that tax only the value of
extracted minerals at the mine mouth or the wellhead.

CONCLUSION

The EAA approach, as applied to capital recovery and cost allocation problems in
many engineering, finance and accounting texts, assumes that projects have level
production over their economic lives. However, there are many examples of non-
level production over the life of a project. As happens with natural gas production
from a known gas ficld, essentially all extractive industrics anticipate declinimg
production over the ficld’s or mine’s life.
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TABLE 4. Amortization Schedule for Numeric Example: Exponential Decline.®
, N . Total Cost Return on ' Capital EOY Cap

Recovered” Invested Cap‘ Recovered® Employed*
0 $350.000,000
1 48.04 1.0000  $80.554,612 $52.500,000  $28.054.612 321945388
2 4432 09227 74,324,108 48,291,808 26,032,300 295913.087
3 4090 08513 68,575,503 44,380,903 24188540 271,724,548
4 37.73 0.7854 63,271,524 40,758,682 22512842 249211.700
S 3481 0.7247 58,377,782 37.381.756 20996026 228.215,680
6 32,12 0.6686 53,862,547 34,232,352 19.630,195  208.585.485
7 29.64 0.6169 49,696,543 31,287,823 18,408,720 190,176,765
8 27.35 0.5692 45,852,759 28,526,515 17,326,244 172,850,521
9 2523 0.5252 42,306,273 25,927,578 16,378,695 156,471,820
10 2328 0.4846 39,034,090 23,470,774 15563316 140,908,510
11 21.48 0.4471 36,014,995 21,136,277 14,878,718 126,029,792
12 19.82 04125 33,229411 18,904,469 14,324,943 111,704,849
13 18.28 0.3806 30,659,279 16,755,727 13,903,552 97,801.297
14 16.87 0.3512 28,287,934 14,670,195 13,617,740 84,183,558
s 15.57 03240 26,100,001 12,627,534 13,472,468 70,711,090
16 1436 0.2989 24,081,294 10,606,663 13,474,631 57,236.459
17 1325 0.2758 22,218,724 8,585,469 13,633,255 43,603,203
18 1223 0.2545 20,500,215 6,540,481 13,959,734 29,643,469
19 11.28 0.2348 18,914,624 4,446,520 14,468,103 15,175,366
20 10.41 0.2166 17.451,670 2,276,305 15,175.366 4}

Tot:  205.81 $345.103,529 $223,319.209  $121,784.320
Ave: 3347 $56,115,115 $33,649,195  $22.465.920

* 1 denotes years; y, denotes production level (in mmm MCF): r, denotes relative production

index; this table assumes A = $80,554,612.45 and r=0.15

" (Total Cost Recovered), = A x r,

(Return on Invested Capital), = () x (EOY Capital Employed), |

(Capital Recovered), = (Total Cost Recovered), - (Return on Invested Capital),

¢ (EQY Capital Employed), = (EOQY Capital Employed), | - (Capital Recovered),

We develop and illustrate a modified EAA methodology for determining a

CRF that may be used to allocate capital costs evenly over each unit of production

for the capital project’s entire life. This methodology should be used by

government entities to calculate severance taxes on the value of extracted minerals

at the mine mouth or the wellhead, and by firms in extractive industries to correctly

allocate capital costs.
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The use of ud hoc depreciation schedules or actual interest paid as a method
of allocating capital costs violates many of the financial principles used in capital
budgeting, and may result in substantially distorted capital cost allocation. This
may lead to incorrect calculations of severance tax liabilities or incorrect capital
budgeting decisions by the firm.
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